Response dynamics and receptive-field organization of catfish ganglion cells [published erratum appears in J Gen Physiol 1995 Aug;106(2):following 388]

نویسندگان

  • H M Sakai
  • K Naka
چکیده

Responses from catfish retinal ganglion cells were evoked by a spot or an annulus of light and were analyzed by a procedure identical to the one used previously to study catfish amacrine cells (Sakai H. M., and K.-I. Naka, 1992. Journal of Neurophysiology. 67:430-442.). In two-input white-noise experiments, a response evoked by simultaneous stimulation of the center and surround was decomposed into the components generated by the center and surround through a process of cross-correlation. The center and surround responses were also decomposed into their linear and nonlinear components so that the response dynamics of the linear and nonlinear components could be measured. We found that the concentric organization of the receptive field was determined by linear components, i.e., the first-order kernels generated by the center and surround were of opposite polarity. Both the center and surround generated second-order kernels with similar signatures, i.e., the second-order components formed a monotonic receptive field. The peak response time of the first- and second-order kernels from the surround was longer by approximately 20 ms than that of the center. Except for the DC potential present in the intracellular responses, almost identical first- and second-order kernels for the center and surround were obtained from both the intracellular response and spike discharges. Thus, information on concentric organization of a receptive field is translated into spike discharges with little loss of information. A train of spike discharges carries, simultaneously, at least four kinds of information: two linear and two nonlinear components, which originate in the receptive field center and the surround. A spike train is not a simple signaling device but is a carrier of complex and multiple signals. Victor, J. D., and R. M. Shapley (1979. Journal of General Physiology. 74:671-687.) discovered similarly that, in the cat retina, static second-order nonlinearity is encoded into spike trains. Results obtained in this study support the thesis that signals generated by the preganglionic cells are translated into spike discharges without major modification and that those signals can be recovered from the spike trains (Sakuranaga, M., Y. Ando, and K.-I. Naka. 1987. Journal of General Physiology. 90:229-259.; Korenberg, M. J., H. M. Sakai, and K.-I. Naka. 1989. Journal of Neurophysiology. 61:1110-1120.). Current injection studies have shown that such signal transmission is possible (Sakai, H. M., and K.-I. Naka, 1988a. Journal of Neurophysiology. 60:1549-1567.; 1990. Journal of Neurophysiology. 63:105-119.).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contrast gain control in the lower vertebrate retinas [published erratum appears in J Gen Physiol 1995 Aug;106(2):following 388]

Control of contrast sensitivity was studied in two kinds of retina, that of the channel catfish and that of the kissing gourami. The former preparation is dominantly monochromatic and the latter is bichromatic. Various stimuli were used, namely a large field of light, a spot-annulus configuration and two overlapping stimuli of red and green. Recordings were made from horizontal, amacrine, and g...

متن کامل

Response Dynamics and Receptive-Field Organization of Catfish Ganglion Cells

Address correspondence to Ken Naka, NYU Medical Center, 550 First Avenue, PHL-821, New York, NY 10016. J. G~N. I'~S~OL 9 The Rockefeller University Press 9 0022-1295/95/06/0795/20 $2.00 Volume 105 June 1995 795-814 795 on A ril 6, 2016 jgp.rress.org D ow nladed fom Published June 1, 1995

متن کامل

The effect of strychnine, bicuculline, and picrotoxin on X and Y cells in the cat retina

The effect of intravenous strychnine and the GABA antagonists picrotoxin and bicuculline upon the discharge pattern of center-surround-organized cat retinal ganglion cells of X and Y type were studied. Stimuli (mostly scotopic, and some photopic) were selected such that responses from both on and off-center cells were either due to the center, due to the surround, or clearly mixed. Pre-drug con...

متن کامل

Role of horizontal cells in organization of the catfish retinal receptive field.

THE RECEPTIVE-FIELD organi zation of the vertebrate retinal ganglion cell has been the subject of numerous studies. However, the cellular mechanism underlying the receptive field has been explored relatively rarely. One exception can be found in a recent study of the mudpuppy retina where responses were recorded from various retinal neurons (17) and it was shown that the polarization of a bipol...

متن کامل

Can the theory of “whitening” explain the center-surround properties of retinal ganglion cell receptive fields?

To account for the spatial and temporal response properties of the retina, a number of studies have proposed that these properties serve to "whiten" the visual input. In particular, it has been argued that the sensitivity of retinal ganglion cells is matched to the spatial frequency spectrum of natural scenes, resulting in a flattened or "whitened" response spectrum across a range of frequencie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 105  شماره 

صفحات  -

تاریخ انتشار 1995